Today's talk was given by our own Dr. Teresa Trierweiler MD. Her talk concerned adult immunizations and was drawn largely from the CDC website https://www.cdc.gov/vaccines/schedules/hcp/imz/adult.html. This was complimented by her vast experience as a primary care physician as well as information from the Journal of the American Medical Association (JAMA) and the American Family Physician.

Her first comments were in regard to who should not be vaccinated. These were #1 anyone with a truly severe allergy, and #2 anyone unfortunate enough to have had the Gillian-Barre syndrome which is a terrible neurological problem of ascending paralysis which can linger for a very long period of time.

Her next comments were directed at why you should be vaccinated. These were #1 Who wants to be ill for any period of time, especially with a disease associated with increased mortality?
#2 It's 10 times less expensive to receive a vaccine than to treat the disease.

The CDC Recommendations for adults are as follows
1. Flu shot every year with Recombinant DNA. If you are under the age of 50 you can get the nasal spray instead which is a live attenuated virus.
2. TDP (tetanus, diphtheria, pertussis) booster every 10 years.
3. Measles, mumps, rubella (MMR) plus booster if born 1957 or later.
4. Varicella (chicken pox) plus booster if born 1980 or later, or lack evidence of immunity.
5. Shingles vaccine (Zoster) RCV plus booster if over the age of 50. This is somewhat expensive and not covered by most insurance.
6. Human papilloma virus (HPV) for anyone up to the age of 47, and this seems to be increasing.
7. Special circumstances do apply to various groups of people (pregnant, immune compromised, travel related, and job related), so be sure to discuss your situation with your doctor.

The last area of discussion involved Covid-19. There is soon to be a vaccine available that so far has shown no (0) serious reactions, although there are some minor reactions some worse than others. The vaccines are mRNA vaccines which are taken up in the person's own cells which are then able to produce and release proteins that are identical to some of the more important components of the coronavirus capsule. The patient then mounts an immune response to these proteins which then are able to attach the virus should it be encountered.

Thanks to Teresa for this timely and important talk.